GEOGRAPHICAL DISTRIBUTION, DIAGNOSIS AND TREATMENT OF HUMAN FASCIOLIASIS: A REVIEW

J.G. ESTEBAN, M.D. BARGUES & S. MAS-COMA
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot - Valencia, Spain

Received 24 November 1997; accepted 30 January 1998

SUMMARY: In recent years multidisciplinary studies have furnished additional knowledge on different aspects of human fascioliasis caused by Fasciola hepatica. Today, the overall conception we have about this parasitic disease is pronouncedly different from only a few years before. The present exhaustive review compiles a total of 7071 human cases reported from 51 countries in all continents in the last 25-year period: Europe; 2951; America; 3267; Asia; 354; Africa; 487; Oceania; 12. The real number of human cases is undoubtedly much greater than that reported. A global analysis of the geographical distribution of human cases shows that the expected correlation between animal and human fascioliasis only appears at a basic level. High prevalences in humans do not seem to be necessarily related to areas where fascioliasis is a great veterinary problem. The major health problems are found in Andean countries, northern Africa, the Near East and western Europe. For human fascioliasis diagnosis, there are several types of techniques, although some suggestive clinical presentation aspects may be useful. Direct parasitological techniques, indirect immunological tests and other non-invasive diagnostic techniques are presently used for human fascioliasis diagnosis. New biological data introduce the importance of quantitative coprological data analyses in epidemiological surveys, as well as in posttreatment (and future postvaccination) monitoring. Besides eggs in coprological analyses, adults and eggs may be also found elsewhere by means of other invasive techniques: obtaining duodenal fluid, duodenal and biliary aspirates; surgery (laparotomy, cholecystectomy, sphincterotomy); histological examination of liver and/or other organ biopsy materials. Serological, intradermal and stool antigen detection tests have been developed. Immunological techniques present the advantages of being applicable during both periods of the disease, but fundamentally during the invasive or acute phase, as well as to the other situations in which coprological techniques may present problems. At any rate, immunological techniques offer other types of problems mainly to sensitivity and specificity. Different serological tests have been used for human diagnosis. Almost all these techniques concern the detection of circulating antibodies and only a very few are designed to detect circulating antigens and immune complexes. Several serological techniques have recently proved to be also useful for monitoring post-treatment evolution. Non-invasive diagnostic techniques which can be used for human diagnosis are radiology, radioisotope scanning, ultrasound, computed tomography and magnetic resonance. No new drugs have been developed during the last 15 years for fascioliasis treatment, and drug resistance in F. hepatica has already been reported to affect the efficacy of the drugs against immature stages in animals. For human fascioliasis, many drugs were used in the past that have now been more or less abandoned. Emetine derivatives (Emetine, Dehydroemetine), the classic drugs, were used widely and continue to be used today, but they cause a variety of toxic manifestations. Bithionol has been considered the drug of choice for years despite its long treatment course. At any rate, there was no consensus about the therapy of choice for human fascioliasis until very recently when Triclabendazole has proved its efficacy. Other drugs used for human fascioliasis have been Chloroquine, Hexachloro-para-xylol, Niclofuran, Metronidazole, Albendazole, Mebendazole, Rafoxanide, and Prednisone. Worth mentioning is that Fasciola may be the only genus of trematode that has practically no response to Praziquantel.

KEY WORDS: Fasciola hepatica, human fascioliasis, geographical distribution, diagnosis, treatment, review.

CONTENTS

Introduction .. 14
Geographical distribution .. 14
 Human reports in Europe .. 15
 Human reports in America ... 16
 Human reports in Asia ... 17
 Human reports in Africa .. 18
 Human reports in Oceania ... 18
Diagnosis ... 18
 Parasitological examinations .. 19
 Coprological techniques .. 19
 Qualitative techniques .. 19
 Quantitative techniques .. 20
 Other adult and egg finding techniques .. 20
 Immunological techniques .. 20
 Serological tests .. 21
 For diagnosis .. 21
 Antibody detection .. 21
 Circulating antigen and immune complex detection ... 22
 Molecular probes and hybridomas .. 23
 For monitoring post-treatment evolution .. 23
INTRODUCTION

The liver fluke species *Fasciola hepatica* (Linnaeus, 1758) (Trematoda: Fasciolidae) is well known because of its veterinary importance related to the great production and economic losses it causes in livestock, mainly sheep and cattle (BORAY, 1982). The review by CHEN & MOTT (1990) was the first paper in which the public health importance of human fascioliasis began to be emphasized, owing to the high number of human cases recorded in the 1970-1990 period: 2594 infected persons from 42 different countries covering all continents.

However, in recent years multidisciplinary studies have furnished additional knowledge on different aspects of human fascioliasis. Today, the overall conception we have about this parasitic disease is pronouncedly different from only a few years before (MAS-COMA, BARGUES & ESTEBAN, 1998).

This paper presents an exhaustive review of three aspects of human fascioliasis where important changes have very recently been introduced: geographical distribution of human case reports, diagnosis and treatment.

GEOGRAPHICAL DISTRIBUTION

Human cases have been reported from countries in Europe, America, Asia, Africa and Oceania. Major reviews on human infection by *F. hepatica* have been carried out by FACEY & MARSDEN (1960), CHEN & MOTT (1990) and more recently MAS-COMA et al. (1998) and MAS-COMA, BARGUES & ESTEBAN (1998). Numbers of clinical cases of *F. hepatica* reported as well as of infected persons identified during epidemiological surveys have been significantly increasing since 1980.

The present exhaustive review compiles a total of 7071 human cases reported from 51 countries in all continents in the last 25-year period. These cases have been detected by parasitological methods (either by finding eggs in the stool or bile, or adult worms at surgical operation or at autopsy), by serological tests, by pathohistological examinations of sections of liver and other organs, by non-invasive techniques detecting a parasite stage and by clinical presentation. In several cases the diagnostic technique was not mentioned.

At any rate, care must be taken with these data. Our personal experience shows that numerous cases are diagnosed but only noted in non-published internal documents, reports or university theses, or published in local journals of very limited diffusion (i.e., Bolivia - see MAS-COMA et al., 1995). Another problem arises because of human fascioliasis not being a disease of obligatory declaration (i.e., Spain - see SORRIBES et al., 1989). Other limitations are related to the different methodologies used. Difficulties also appear when analysing detailed results of several community-based or epidemiological surveys. Finally, as the infection may be asymptomatic, and the symptoms and signs are not pathognomonic, the number of human cases is undoubtedly much greater than is reported.

A global analysis of the distribution of human cases shows that the expected correlation between animal and human fascioliasis only appears at a basic level. Although it is true that the major sources of the infection, domestic herbivorous mammals, are widely distributed in the world and human infection is not rare in these areas (CHEN & MOTT, 1990), high/low human prevalences are not related to high/low animal prevalences, respectively. Thus, high prevalences in humans do not seem to be necessarily related to areas where fascioliasis is a great veterinary problem. In Europe there is a concentration of human cases in the western countries of France, Spain and Portugal, whereas animal fascioliasis is, because of climatic conditions, more linked to northern countries in which human cases are only sporadic. Similarly, in South America hyperendemics and mesoendemics are found in Bolivia and Peru, whereas animal fascioliasis is, because of climatic conditions, more linked to northern countries in which human cases are only sporadic. Such geographic differences be-
A review of human fascioliasis

tween human and animal fascioliasis are related to differences in human dietary habits, as well as to economic and hygienic-sanitation conditions.

Human reports in Europe

A total of 2951 human cases diagnosed in European countries are compiled in Table 1. Up to 19 countries are involved, although for convenience (according to literature data) countries recently created are included in the former USSR, former Czechoslovakia and former Yugoslavia. It is worth mentioning that no recent report on fascioliasis was found from Hungary despite the several severe outbreaks of human infection recorded there between 1959 and 1970 (KOBULEJ, 1981/82). According to Table 1, France, Portugal, the former USSR (including its Asian part), Spain and the UK are the countries including most of the cases. In all other countries cases appear to be very sporadic.

Table 1. Human reports in Europe.

<table>
<thead>
<tr>
<th>Country (area)</th>
<th>No. of cases</th>
<th>Parasitological</th>
<th>Serological</th>
<th>Clinical</th>
<th>Unknown</th>
<th>References (according to numbers in References section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>53, 54, 296, 473, 489</td>
</tr>
<tr>
<td>Belgium</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td>77, 142, 186, 304, 419</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>472</td>
</tr>
<tr>
<td>former Czechoslovakia</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>France (Corsica)</td>
<td>20</td>
<td>3</td>
<td>15</td>
<td></td>
<td>2*</td>
<td>146, 161, 216, 217</td>
</tr>
<tr>
<td>Germany</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>101, 315, 445</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Ireland</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>Italy</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td>66, 370, 465, 478</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>481</td>
</tr>
<tr>
<td>Poland</td>
<td>39</td>
<td>37</td>
<td>2</td>
<td></td>
<td></td>
<td>65, 206, 263, 287, 338, 386, 458, 485</td>
</tr>
<tr>
<td>Portugal</td>
<td>1115</td>
<td>210</td>
<td>142</td>
<td></td>
<td>763**</td>
<td>4, 11, 124, 150, 255, 331, 417, 430, 431, 432, 433</td>
</tr>
<tr>
<td>Rumania</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>64, 157, 470</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>Switzerland</td>
<td>15</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td>28, 153, 220, 320, 405, 447, 462</td>
</tr>
<tr>
<td>UK</td>
<td>93</td>
<td>25</td>
<td>28</td>
<td></td>
<td>40*</td>
<td>30, 48, 49, 85, 88, 164, 235, 260, 266</td>
</tr>
<tr>
<td>former USSR</td>
<td>195</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td>22, 74, 273, 283, 294, 400, 424, 425</td>
</tr>
<tr>
<td>former Yugoslavia</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>3*</td>
<td>102, 335, 454</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2951</td>
<td>785</td>
<td>1015</td>
<td>18</td>
<td>1133</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Human reports in Europe. *= by parasitological and/or serological tests; **= by parasitological, serological and/or clinical diagnosis.
16

but are not included in Table 1 because no report references could be found.

Human reports in America

Human cases diagnosed in American countries are compiled in Table 2. Whereas in North and Central American countries cases can be counted, this is not the case in South America where several countries present large endemics.

In North America, human fascioliasis appears to be only very sporadic in the U.S.A. and Canada. In Mexico, 53 cases had been reported before the period here analysed (FLORES & GARCIA, 1960; ALVAREZ-CHACON et al., 1992).

In Central America, fascioliasis is a human health problem in the Caribbean Islands, above all in zones of Puerto Rico and Cuba. In Cuba, in Pinar del Rio Province more than 1000 people were infected between 1947 and 1948 (MITTERPAK, 1968) and a new outbreak involving 81 subjects occurred in 1995 (PEREZ et al., 1997), and in Villa Clara Province an outbreak involved more than 1000 subjects in 1983 (see GONZALEZ et al., 1985, 1987; DIAZ et al., 1990). On the mainland, only Costa Rica and Guatemala appear in the records. A total of 16 human cases have been diagnosed in Guatemala up to the present (AGUILAR & CIFUENTES, 1993). It is clear that studies on other countries are needed. In countries such as the Dominican Republic and El Salvador, fewer than 100 cases

<table>
<thead>
<tr>
<th>Country (area)</th>
<th>No. of cases</th>
<th>Parasitological</th>
<th>Serological</th>
<th>Clinical</th>
<th>Unknown</th>
<th>Diagnostic method</th>
<th>References (according to numbers in References section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>85</td>
<td>85</td>
<td>111</td>
<td>85</td>
<td>25</td>
<td></td>
<td>116, 215, 316, 366, 390, 451</td>
</tr>
<tr>
<td>Bolivia</td>
<td>2001</td>
<td>993</td>
<td>872</td>
<td>1</td>
<td>375</td>
<td></td>
<td>29, 90, 180, 181, 254, 328, 460</td>
</tr>
<tr>
<td>Brazil</td>
<td>44</td>
<td>1</td>
<td>106</td>
<td>44</td>
<td>37</td>
<td></td>
<td>44, 133, 258, 387, 436</td>
</tr>
<tr>
<td>Canada</td>
<td>1</td>
<td></td>
<td></td>
<td>1*</td>
<td></td>
<td></td>
<td>5, 152, 175, 183, 222, 223, 227, 339, 347, 381, 382, 415</td>
</tr>
<tr>
<td>Chile</td>
<td>204</td>
<td>90</td>
<td>5</td>
<td>108</td>
<td></td>
<td></td>
<td>18, 35, 36, 37, 39, 40, 41, 97, 301, 438, 439, 440, 463</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>57</td>
<td>1</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>24, 122, 345</td>
</tr>
<tr>
<td>Cuba</td>
<td>361</td>
<td>222</td>
<td>78</td>
<td>61*</td>
<td>14</td>
<td></td>
<td>5, 152, 175, 183, 222, 223, 227, 339, 347, 381, 382, 415</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1</td>
<td>1</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Guatemala</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Haiti</td>
<td>1</td>
<td>1</td>
<td></td>
<td>476</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Mexico</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>7, 23, 267, 354</td>
</tr>
<tr>
<td>Peru</td>
<td>397</td>
<td>291</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td>80, 115, 289, 290, 332, 344, 384, 414, 459, 477</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78, 81, 308, 410, 411</td>
</tr>
<tr>
<td>Uruguay</td>
<td>60</td>
<td>8</td>
<td>8</td>
<td>44*</td>
<td>6, 114</td>
<td></td>
<td>239, 357, 394</td>
</tr>
<tr>
<td>USA</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3267</td>
<td>1770</td>
<td>1028</td>
<td>230</td>
<td>239</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.- Human reports in America. * = an outbreak in 1983 involved more than 1000 subjects; * = by parasitological and/or serological tests; ** = by serological and/or clinical diagnosis; § = data from a report of the Ministry of Health, method not mentioned; ¶ = by parasitological and/or clinical diagnosis.
have been documented (WHO, 1995) but are not included in Table 2 because no report references could be found.

In South America, human fascioliasis is a serious problem in Bolivia and Peru, and probably also in Ecuador. In Bolivia, although sporadic cases are known in different parts of the country (MAS-COMA et al., 1995), the human hyperendemic concerns only the Northern Altiplano zone, between the Lake Titicaca and the valley of the city of La Paz, at 3800-4100 m altitude. There, prevalences in given communities are as high as 72% and 100% in coprological and serological surveys, respectively (HILLYER et al., 1992; MAS-COMA et al., 1995; BJORLAND et al., 1995; ESTEBAN et al., 1997a,b; ANGLES et al., 1997; STRAUSS et al., 1997a) including about 350000 infected individuals and a human population of around 1 million people at risk, according to estimations made by HILLYER & APT (1997).

In Peru, human cases have been detected in the whole country, with mesoendemics and hyperendemics in given zones. The high human prevalences in Arequipa (PICOAGA, LOPERA & MONTES, 1980). Mantaro valley (up to 60% of children presenting eggs in faeces - BENDEZU, 1969; STORK et al., 1973), Cajamarca valley (up to a 50% in the rural population and more than 20% in Cajamarca city by coprological methods - COSME-CONTRERAS et al., 1971; KNOBLOCH, 1985; KNOBLOCH et al., 1985; C. NAQUIRA, Lima, 1995, pers. comm.), and the Puno region (general prevalence of 15.6%, with 37% in children - SANCHEZ, APARICIO & HURTADO, 1993; C. NAQUIRA, Lima, 1995, pers. comm.) are worth mentioning; global estimations refer a rural population of almost 8 million people at risk (WHO, 1995).

Concerning Ecuador, general characteristics of the country suggest a situation similar to that known in Peru, although unfortunately there is a total lack of concrete data. Only one case of F. hepatica infection, reported in a man who had returned to Germany from Ecuador, could be found (AHRENS & BERNING, 1968). However, according to WHO (1995), about 1% of the total rural population living in the endemic areas at risk, or approximately 20000 people, are estimated to be infected.

In Chile, human fascioliasis is hypoendemic in the Valparaíso and Viña del Mar zones, as well as in Regions V, VI and VII (SUBERCASEAUX et al., 1985; APT et al., 1993). In countries like Argentina, Uruguay, Brazil, Colombia, and Venezuela, human fascioliasis appears to be focal in distribution and sporadic, with less than 100 cases reported (WHO, 1995). No paper concerning human cases in Guyana, Surinam, French Guiana and Paraguay was found. At any rate, the example of Bolivia must not be forgotten. This country did not even appear in the WHO list according to the review by CHEN & MOTT (1990) and has recently proved to include the highest hyperendemic zone of the whole world. This situation was already known before 1990, but the information could only be found in unpublished reports, internal documents or papers in local journals of very restricted diffusion (MAS-COMA et al., 1995).

Human reports in Asia

In Asia an additional problem appears because of the overlapping distribution, from the Near East to the Far East, of *F. hepatica* and *F. gigantica*, including intermediate forms which are traditionally referred to as *Fasciola* sp. That is why in several papers the liver fluke is not noted at species level and numerous reports speak only of «fascioliasis». Although HASHIMOTO et al. (1997) have recently demonstrated by means of molecular techniques that intermediate forms may be ascribed to *F. gigantica*, at least in Japan, nothing can be assured for other Asian countries. Consequently, human cases

<table>
<thead>
<tr>
<th>Country (area)</th>
<th>No. of cases</th>
<th>Parasitological</th>
<th>Serological</th>
<th>Clinical</th>
<th>Unknown</th>
<th>References (according to numbers in References section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>159, 259, 307, 313, 464, 483, 487, 502, 503</td>
</tr>
<tr>
<td>India</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>87, 297</td>
</tr>
<tr>
<td>Iran</td>
<td>244</td>
<td>18</td>
<td>226</td>
<td>4</td>
<td>1</td>
<td>50, 192, 193, 234, 284, 342, 356, 398</td>
</tr>
<tr>
<td>Israel</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>143, 443</td>
</tr>
<tr>
<td>Japan</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td></td>
<td>16, 17, 156, 203, 228, 262, 270, 293, 442, 466, 469, 496</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Korea</td>
<td>15</td>
<td>8</td>
<td>1</td>
<td></td>
<td>6*</td>
<td>123, 125, 127, 128, 232, 256, 285, 286, 305, 371</td>
</tr>
<tr>
<td>Thailand</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>103, 126, 282, 372, 475, 491</td>
</tr>
<tr>
<td>Turkey</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>46, 52, 63, 129, 163, 226, 276, 277, 278, 365, 482, 499</td>
</tr>
<tr>
<td>Yemen</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>355, 402, 444</td>
</tr>
<tr>
<td>TOTAL</td>
<td>354</td>
<td>116</td>
<td>231</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.– Human reports in Asia. * = by parasitological, serological and/or clinical diagnosis.
diagnosed in Asian countries and compiled in Table 3 refer to all reports in which *F. hepatica* is specifically noted and those in which the causal species is not specifically reported. At any rate, reports concerning Japan in which the *Fasciola* species is undetermined have been also included in Table 3.

Only a few cases have been described in Asia, including several countries among which Iran is worth mentioning because of the recent estimates which suggest more than 10,000 human cases (see BAHAR et al., 1990; MASSOUD, 1990; POURTAGHVA et al., 1990; WHO, 1995) and a population of about 6 million at risk (WHO, 1995). Countries such as Cambodia, Iraq, Israel, Lebanon, Nepal, the Philippines, the Syrian Arab Republic, and Viet Nam are considered as presenting less than 100 documented cases by WHO (1995) but are not included in Table 3 because no references on the reports could be found.

Human reports in Africa

Only a few human cases have been reported from African countries (Table 4), although studies carried out up to the present are evidently insufficient for a significant overview. Moreover, in some parts of Africa overlapping infections may occur with both *F. hepatica* and *F. gigantica*. *F. hepatica* appears to be more restricted in northern Mediterranean countries such as Morocco, Algeria and Tunisia (MAAMOURI et al., 1968; CHEN & MOTT, 1990; AYADI et al., 1991; KLALAYOUNE et al., 1991; AYADI, MAKNI & BEN SAID, 1997), as well as in southern Zimbabwe and South Africa (PANTELORIS, 1965), and it is the species present at high altitude in Kenya and Ethiopia (BERGEON & LAURENT, 1970), whereas *F. gigantica* is present in most of the African continent, from the Nile Delta in the north to the Cape Provinces of South Africa in the south (BORAY, 1982).

The most human cases have been reported from Egypt (ARAFA & LASHEN, 1993; EL-SHARY, EL-DESORY & EL-FEKY, 1991; EL-SHARY et al., 1991; FARAG et al., 1979, 1986, 1988; FARID et al., 1986, 1990, 1993; FARID, KAMAL & WOODY, 1988; MANSOUR et al., 1983; OSMAN, HELMY & MEHEDE, 1995; OSMAN et al., 1995; RAGAB & FARAG, 1978; SALEM, ABOU BHASA & FARAG, 1987; HAMMOUDA et al., 1995, 1997), probably due to *F. gigantica*, since it appears to be the only species in domestic animals in this country (CHEN & MOTT, 1990). The *Fasciola* species involved remains undetermined in most reports, although sometimes *F. hepatica* is specified (FARID, 1971; FARID et al., 1977; ABOU-BASHA et al., 1989; EL-SHABRAWI et al., 1997). Fascioliasis has appeared as an emerging health problem in Egypt during the last few years. Liver fluke infection in humans has been found in almost all governorates of Lower Egypt and even in some governorates of Upper Egypt (EL-KHOBY, 1997). An increasing number of human infections with both *Fasciola* species have been diagnosed in the Nile Delta, one province of Upper Egypt, and the city of Alexandria. Some rural areas may be considered endemic, with prevalence rates varying between 7% and 17% (FARAG, 1997). The population at risk is 27.7 million people and the number infected is at least 830,000 (WHO, 1995).

Countries such as Ivory Coast, Madagascar, Mali, and Mozambique, with less than 100 documented cases, and Ethiopia, with 100-1000 cases, are considered by WHO (1995) but are not included in Table 4 because no references on the *F. hepatica* reports could be found.

Human reports in Oceania

Concerning Oceania, there are only 12 human reports from Australia and none in New Zealand (see Table 5), despite the important livestock production and the high prevalences in sheep and cattle (BORAY, 1969; CHEN & MOTT, 1990).

DIAGNOSIS

For human fascioliasis diagnosis, there are several types of techniques, although some suggestive clinical presentation aspects may be useful.
Direct parasitological techniques, indirect immunological tests and other non-invasive diagnostic techniques are presently used for human fascioliasis diagnosis.

Parasitological examinations
Parasite stages may be looked for not only in faeces. Besides eggs in coprological analyses, adults and eggs may also be found elsewhere by means of other invasive techniques.

COPROLOGICAL TECHNIQUES
Coprological examination by finding the parasite eggs in faeces is still the main method for diagnosis. However, several situations may be taken into account:

- Eggs in transit: people ingesting infected domestic animal livers (mainly cattle, sheep and pig) a short time before may reflect «false» fascioliasis when the fluke eggs are found in their stools (STORK et al., 1973; RAGAB & FARAG, 1978; CAMPO et al., 1980); in such cases, diagnosis requires placing the patient on a liver-free diet and performing repeated follow-up stool examinations;

- Acute phase: in man, the incubation phase (from a few days to 2-3 months) is shorter than the prepatent period (at least 3-4 months), so that infected humans may present clinical findings long before eggs could be found in the stools, making egg finding in faeces as an early diagnosis tool impossible; thus, coprological techniques become useful only after 3-4 months post-infection;

- Egg output dynamics: in man, egg output number (in livestock the absence of a direct relationship between number of flukes present and number of eggs shedded is well known) and dynamics (egg production oscillations in trematodes in general throughout their life span is also well known) are unfortunately unknown, so that different possibilities such as intermittent and very low egg shedding, above all in cases of only one or a few fluke adults as well as in old infections, may not be excluded; multiple and repeated follow-up stool examinations are needed in such cases;

- Ectopic infections: many ectopic locations are not digestive-related and consequently eggs cannot be found in stools; moreover, a sexually mature ectopic fluke has never been found, so that eggs are presumably never produced;

- Immature flukes: except in human endemic regions, man is generally believed to be a non-suitable host for F. hepatica; consequently, in non-human endemic areas the possibility of hepatic infections by flukes unable to attain maturity in human subjects cannot be disregarded; eggs could never be found in such subjects.

Up to the present, qualitative techniques were usually applied for human fascioliasis coprological diagnosis. Techniques were never considered concerning their adaptability to furnish good quantitative results. However, recent studies by BARGUES et al. (1996) have proved that eggs shed by humans may be viable and thus humans contribute to the disease transmission at least in hyperendemic areas. This new fact introduces the importance of quantitative data analyses in epidemiological surveys, as well as in posttreatment (and future postvaccination) monitoring.

Qualitative techniques
Techniques ranging from a simple direct smear to different concentration methods (i.e., RITCHIE, 1948; SAPERO & LAWLESS, 1953; BLAGG et al., 1955; LUMBRERAS, CANTELLA & BURGA, 1962; KNIGHT et al., 1976; MUÑOZ et al., 1987) have been used for the diagnosis of human chronic F. hepatica infection.

Egg concentration has been achieved by flotation and sedimentation techniques (ASHTON et al., 1970; STORK et al., 1973; RAGAB & FARAG, 1978; FARAG et al., 1979; BENDEZU, FRAME & HILLYER, 1982; BOLBOL, 1985; KNOBLOCH et al., 1985; MUÑOZ et al., 1987; SAMPAIO SILVA in CHEN & MOTT, 1990; HILLYER et al., 1992; ESTEBAN et al., 1997a,b). The sedimentation technique appears to be more accurate and sensitive than flotation techniques, as most of the hyperosmotic solutions distort the eggs (BORAY, 1969).

A comparative study of 3 techniques (MUÑOZ et al., 1987) was made on the basis of 15 known human cases of F. hepatica infection (6 stool samples per patient, one daily): the gravity sedimentation method modified by MUÑOZ et al. (1987) (Fast Sedimentation Method -
al., 1975), the recovery rates of eggs in the sediment (FSM); the Teleman centrifugation technique (TM); and the standard Gravity Sedimentation (GS). With TM, eggs of the parasite were only found in 33.3% of the cases, in contrast with 100% for GS and FSM. A more detailed study of the last two revealed that FSM, besides being easier and faster to perform, permitted ova detection in all the patients through the examination of a single sample, while GS only reaches 73.3% of the cases considering the 6 samples. The respective indexes of positive over performed readings were 92.2% for FSM and 20.6% for GS. Adding growing quantities of eggs (5 by 5) to negative samples, a complementary study on the sensibility of FSM was conducted and pointed out that 15 ova were enough to allow 100% of the positive readings.

According to KNOBLOCH et al. (1985), rapid sedimentation (using 20 g faeces on each of 3 consecutive days), although inconvenient, seemed to be largely more sensitive than the merthiolate-iodine-formaldehyde concentration method (MIFC) (using 1 g of faeces in a single examination) or the Enterotest, according to BEAL et al. (1970) (single examination of duodenal fluid). Among five concentration techniques compared by AKAHANE et al. (1975), the recovery rates of eggs in the sediment using 0.5 g faeces were: formalin-ether method, 5.3%; HCl-ether method, 7.8%; Weller-Darmin’s modification method, 37.7%; citrate buffer-Tween 80-ether method, 25.3%; and AMS III (TWEEN 80) method, 30.5%.

The cellophane faecal thick-smear technique (Kato-Katz) according to Kato & Miura (1954) and Katz, Chaves & Pellegrino (1972) has also been used (KREMER & MOLET, 1975; HILLYER et al., 1992; BJORLAND et al., 1995; ESTEBAN et al., 1997a,b). This technique has the advantages of being rapid, having low cost, and being reproducible (CHEN & MOTT, 1990). Although it has been estimated as presenting a relatively low sensitivity which limits its clinical application, opinions differ on this aspect. Moreover, this appears to be a very useful quantitative technique.

According to HILLYER & APT (1997), cup sedimentation using tap water (the simplest and cheapest) was more sensitive than formol-ether concentration, which was more sensitive than the Kato-Katz thick smear. At any rate, different results have been found in large epidemiological surveys (ESTEBAN et al., 1997a, b).

Quantitative techniques

In fact, all concentration techniques may be used for egg count if started from a known stool volume. Such techniques have already been used quantitatively in human fascioliasis (STORK et al., 1973; BENDEZU, FRAME & HILLYER, 1982; KNOBLOCH et al., 1985; MUÑOZ et al., 1987; SAPPAJO SILVA in CHEN & MOTT, 1990).

At any rate, the cellophane faecal thick-smear technique (Kato-Katz) appears to be the most appropriate, taking into account time needed, its very low cost and its sensibility, at least in epidemiological surveys (ESTEBAN et al., 1997a, b). Comparative studies are presently under way to ascertain the value of the different techniques for quantitative purposes.

OTHER ADULT AND EGG FINDING TECHNIQUES

Other direct techniques are based on adult and/or egg finding in locations other than faeces. Duodenal fluid obtained with the Enterotest of BEAL et al. (1970) as well as duodenal and biliary aspirations may present fluke eggs (KNOBLOCH et al., 1985; CHEN & MOTT, 1990), mainly after the administration of colecistoquine by intravenous infusion (0.01 ml/kg) (GÓMEZ-CUREZÓ et al., 1997).

Adult flukes and/or eggs may be found in the bile ducts and gall bladder at surgery (laparotomy, cholecystectomy, sphincterotomy) in patients suspected of F. hepatica infection or in patients with cholangitis, cholelithiasis or obstructive jaundice of unknown cause (LORTAT-JACOB et al., 1960; NICHOLAS, 1970; SALEM-BIER, 1974; DIPPO & WIDMER, 1976; FARID et al., 1977; ACOSTA-FERREIRA, VERCELLI-RETTA & FALCONI, 1979; ZHU, XIA & DONG, 1979; MORETO & BARRON, 1980; PEÑA SANCHEZ et al., 1982; PARICHATIKANOND & SARASAS, 1984; URIBARRENA et al., 1985; WONG et al., 1985; CHI et al., 1986; DUAN et al., 1986; HONG et al., 1986; ABOU BASHA et al., 1989; RIVERO & MARcial, 1989; COSME et al., 1990; VEERAPPAN et al., 1991; ATAY-LAY et al., 1993; ARJONA et al., 1995; GUCLU, Dik & AGAOGLU, 1995; KUMAR, GAUTAM & CHATURVEDI, 1995; RIEDTMANN et al., 1995; DIAS et al., 1996). Up to 12 flukes (BANNERMAN & MANZUR, 1986; BELGRAIER, 1976; COSME et al., 1979; COULAUD et al., 1970; DAN et al., 1981; ZHENG et al., 1986) have been removed at laparotomy with clinical recovery. In one unusual case, 19 dead flukes were found in T-tube drainage from the common bile duct (ZHENG et al., 1986). Between 1 and 14 flukes were found in each liver at post-mortem in 81 inhabitants of the Samarkand region in 1968-1986 (SADYKOV, 1988).

Histological examination of liver and/or other organ biopsy materials may occasionally reveal egg granulomas or fluke sections (COULAUD et al., 1975; ACOSTA-FERREIRA, VERCELLI-RETTA & FALCONI, 1979; ZHU, XIA & DONG, 1979; SAPUNAR et al., 1992; KIM, CHUNG & CHO, 1994; ARJONA et al., 1995; EL-SHABRAWI et al., 1997; RICARDO et al., 1997; TCHIRIKHTCHIAN et al., 1997). Nevertheless, with an adequate index of suspicion, the diagnosis of F. hepatica infection should be established in most cases without having to perform surgery or liver biopsy.

Immunological techniques

For human fascioliasis, serological, intradermal and stool antigen detection tests have been developed.
Rmunological techniques present the advantages of being applicable during both periods of the disease, but fundamentally during the invasive or acute phase, and to the other situations in which coprological techniques may present problems (see above). At any rate, immunological techniques offer other types of problems related mainly to sensibility and specificity.

SEROLOGICAL TESTS

During the recent decades, different serological tests have been used for human diagnosis. Almost all of these techniques concern the detection of circulating antibodies and only a very few are designed to detect circulating antigens and immune complexes. Several serological techniques have recently proved to be also useful for monitoring post-treatment evolution.

For diagnosis

Serological diagnostic tests may detect antibodies or circulating antigens and immune complexes. Molecular biology techniques have recently been developed for *F. hepatica* detection in both snails and definitive animal hosts. These may be applied to human diagnosis in the near future.

Antibody detection: Antibody detection is clearly the method of preference for the immunodiagnosis of fascioliasis. Among the advantages are the ease in obtaining antigen reagents, the ease of the test systems used, and the fact that infections can be detected early (by 1-2 weeks of infection). The disadvantages are the lack of commercially-available defined, specific antigens, combined with test systems (HILLYER, 1993). A consensus concerning the optimal test systems for the serological analysis of human fascioliasis has been difficult to reach (STORK et al., 1973; CHEN & MOTT, 1990). Thus each laboratory prepares its own reagents and test systems with the ensuing lack of uniformity, and consequently results obtained with the same technique vary according to authors. A large number of patients show parasite eggs in their stools despite being serologically negative, and serologic cross-reactions proved to be common (SAMPAIO SILVA et al., 1996).

Different serological antibody-detecting techniques have been applied for human fascioliasis diagnosis:

- **Precipitation tests:** radial diffusion (RD) (i.e., SAMPAIO SILVA et al., 1985); double diffusion (DD) (i.e., EVERALL, 1970; BULAJICC et al., 1977; GARCIA-RODRIGUEZ, MARTIN & GARCIA, 1985; GARCIA-RODRIGUEZ et al., 1985; MERCADO, CANALES & ATIAS, 1985; APT et al., 1992, 1993); immunoelectrophoresis (IEP) and/or counter-immunoelectrophoresis (CIEP) (i.e., CAPRON et al., 1964; STORK et al., 1973; HILLYER, 1975, 1981; HILLYER & CAPRON, 1976; WATTRE, CAPRON & CAPRON, 1978; SAMPAIO SILVA, CAPRON & CAPRON, 1980; GARCIA-RODRIGUEZ, MARTIN & GARCIA, 1985; GARCIA-RODRIGUEZ et al., 1985; MERCADO, CANALES & ATIAS, 1985; MAKLED et al., 1988; MIKHAIL et al., 1990; ASSMAR et al., 1991; BACQ et al., 1991; KODAMA et al., 1991; ALVAREZ-CHACON et al., 1992; APT et al., 1992, 1993; YOUSSEF & MANSOUR, 1993); and metacercarial precipitin test (FARAG, EL-SAYAD & OSMAN, 1995);

- **Haemolysis tests:** complement fixation (CF) (i.e., CAPRON et al., 1973; STORK et al., 1973; BULAJICC et al., 1977; PICOAGA, LOPERA & MONTES, 1980; CONTRERAS & SALINAS, 1987; WESSELY et al., 1988; APT et al., 1992, 1993, 1995);

- **Fluorescence tests:** immunofluorescence assay (IFA) (i.e., FRAGA DE AZEVEDO & COELHO ROMBERT, 1965; CAPRON et al., 1973; STORK et al., 1973; DEEDLER & PLOEM, 1975; BULAJICC et al., 1977; WATTRE, CAPRON & CAPRON, 1978; AMBOISE-THOMAS, DESGEORGES & BOUTTAZ, 1980; SAMPAIO SILVA, CAPRON & CAPRON, 1980; DAVIAU & AMBOISE-THOMAS, 1982; TELLO et al., 1988, WESSELY et al., 1988);

- **Radioisotope tests:** radioimmuno assays (RIST, RAST) (i.e., SAMPAIO SILVA et al., 1985);

- **Enzymatic tests:** enzyme-linked immunosorbent assay (ELISA) (i.e., AMBOISE-THOMAS, DESGEORGES & BOUTTAZ, 1980; HILLYER, 1981; MARTYNENKO & KLIMENKO, 1981; DAVEAU & AMBOISE-THOMAS, 1982; MARTYNENKO, LYSENKO & VASILEV, 1982; ROMBERT & TRINCA, 1982; KAMARDINOV, 1984; KOBLOCH, 1985; ESPINO et al., 1987; WESSELY et al., 1988; KHALIL et al., 1989, 1990; SHAHEEN et al., 1989; ASSMAR et al., 1991; AGUILERA-ZULANTAY & APT, 1992; APT et al., 1992, 1993, 1995; ESPINO, MILLAN & FINLAY, 1992; OSMAN et al., 1992, 1995; YOUSSEF & MANSOUR, 1993; SHAKER et al., 1994; HASSAN et al., 1995; SAMPAIO SILVA et al., 1996; CORDOVA et al., 1997); enzyme-linked immunofiltration assay (ELIFA) (i.e., PAILLER et al., 1990); enzyme-linked immuno-electrotransfer blot (EITB) (i.e., SANTIAGO & HILLYER, 1986; HILLYER & SOLER DE GALANES, 1988; HILLYER et al., 1992; SILVA et al., 1993; SHAKER et al., 1994); and Falcon™ assay screening test-enzyme linked immunosorbent assay (FAST-ELISA) (i.e., HILLYER & SOLER DE GALANES, 1988, 1991; HILLYER et al., 1992; BJORLAND et al., 1995);
– Anti-P₁ antibody tests: automated assay of anti-P₁ antibodies (Ben-Ismail, Carme & Gentilini, 1978; Ben-Ismail et al., 1980, 1982).

The major problem of antibody-detecting techniques lies in their sensitivity and specificity, which are dependent on antigen type and on a lack of consensus concerning the optimal antigen to be used in the different tests (Hillyer, 1993; Sampaio Silva et al., 1996). However, several authors already agree today that crude F. hepatica antigens have less than optimal specificity because they may easily present cross-reactions with other helminthic infections such as paragonimiasis, schistosomiasis, hydatidosis, ascariasis, trichinellosis and filariasis (Hillyer, 1981; Chen & Mott, 1990; Hong et al., 1990), as well as with hepatitis C virus infection (Atoy & Hashim, 1996).

Thus, the use of partially purified antigens in different serologic techniques has been enhanced in order to avoid cross-reactions and gain specificity and sensitivity, i.e., CIEP (Hillyer & Capron, 1976). IFA (Daveau & Ambroise-Thomas, 1982), ELISA (Daveau & Ambroise-Thomas, 1982; Khallil et al., 1989, 1990; Shaker et al., 1989; Ayt et al., 1995) and EITB (Santiago & Hillyer, 1986).

Serological techniques using excretory-secretory (E/S) products of adult F. hepatica as antigen have been reported to have the highest sensitivity and specificity, and allow the differentiation among other human parasite infections: CIEP (Hillyer, 1981), IHA (Azab & El-Zayat, 1996), IFA (Capron et al., 1973; Bulajic et al., 1977; Daveau & Ambroise-Thomas, 1982), and mainly ELISA (Hillyer, 1981; Martynenko & Klimenko, 1981; Daveau & Ambroise-Thomas, 1982; Martynenko, Lyseko & Vasilyev, 1982; Rombert & Trinca, 1982; Espino et al., 1987; Khallil et al., 1989; Osman et al., 1995; Sampaio Silva et al., 1996; Cordova et al., 1997), EITB (Hillyer & Soler de Galanes, 1988; Hillyer et al., 1992; Silva et al., 1993; Shaker et al., 1994) and FAST-ELISA (Hillyer & Soler de Galanes, 1988, 1991; Hillyer et al., 1992; Bjorland et al., 1995). IFA was reported to have 92-96% sensitivity in the acute phase of the infection (Capron et al., 1973). ELISA was reported to have a sensitivity of 95% to 100%, a specificity of 93% to 97% and an accuracy of 96% to 98% (Hillyer, 1981; Espino et al., 1987; Shaker et al., 1994; Osman et al., 1995; Sampaio Silva et al., 1996). EITB was reported to have 100% sensitivity but unknown specificity (Hillyer et al., 1992) and to be 100% sensitive and specific (Shaker et al., 1994). FAST-ELISA was reported to have 95% sensitivity but unknown specificity (Hillyer et al., 1992). Some differences in the antibody responses to E/S antigens reported by different investigators may be due to different methods of antigen preparation and storage conditions, or varying times of blood collection during the course of infection (Hillyer, 1993; Sampaio Silva et al., 1996).

 Specialists concentrate efforts in obtaining purified E/S antigens and/or recombinant molecules to increase sensitivity and specificity even more. By EITB, Fh12 is a potential marker for screening for F. hepatica in humans in areas of the world where schistosomiasis is absent (Hillyer et al., 1988, 1992). The use of the recombinant protein (denoted rFh15) for serological screening of F. hepatica infections is in progress (Hillyer, 1993). A purified Fasciola 27 kDa cysteine proteinase was found to be a species-specific, sensitive antigen for an ELISA for the diagnosis of human fascioliasis (Yamasaki, Aoki & Oya, 1989). Cordova et al. (1997) have recently isolated and characterized two purified F. hepatica cysteine proteinase antigens (26 kDa and 25 kDa), which are valuable as sensitive and specific antigens (mainly that of 25 kDa) for the diagnosis by ELISA of the human fascioliasis. Although yet to be ascertainment in humans, the antibody response of sheep and rabbits to F. hepatica Glutathione S-transferase (FhGST) seemed promising (Hillyer, Soler de Galanes & Battisti, 1992; Hillyer, 1993). These studies suggest a combination of ELISA using F. hepatica E/S antigens followed by a Western Blot (EITB) to detect target candidate diagnostic antigenic polypeptides (Hillyer & Soler de Galanes, 1988, 1991; Hillyer et al., 1992; Hillyer, 1993).

O’Neill et al. (1998) isolated and purified a highly immunogenic cathepsin L1 cysteine proteinase which proved to be potentially useful for the sensitive and specific immunodiagnosis of human fascioliasis, after a comparative study of crude parasite extracts (liver fluke homogenates), E/S products, and purified cathepsin L1 (CL1) as antigens in ELISA to discriminate between seropositive (exposed) and seronegative (non-exposed) human individuals. According to Strauss et al. (1997b) and O’Neill et al. (1998), a standardized diagnostic test for human fascioliasis, based on an ELISA which detects IgG4 responses to CL1, could be available to all diagnostic centres if sufficient quantities of recombinant CL1 can be produced.

Circulating antigen and immune complex detection: A sensitive and immunologically specific antigen detection test is an important goal, since it should imply recent, active infection. Several studies have examined this approach, although better defined reagents still need to be developed (Hillyer, 1993). The few studies on the detection of circulating immune complexes for fascioliasis immunodiagnosis have tended to be disappointing (Hillyer, 1993).

The detection of circulating antigens by ELISA using antibodies against crude (Ambroise-Thomas, Desgeorges & Bouttaz, 1980) and E/S (Espino, Marcet & Finlay, 1990; Espino, Millan & Finlay, 1992; Hamouda et al., 1997) antigens and by EITB using antibodies against crude antigen (Mercado, 1989) as well as of circulating immune complexes (CIC) by 125I-C1q binding test (Sampaio Silva, Santoro & Capron, 1981) can diminish serodiagnostic problems in immunosupres-
ved subjects, enabling a more precocious indirect diagnosis. A close relationship was observed between *F. hepatica* egg output and the detection rate of CIC of *F. hepatica* (Sampaio Silva, Santoro & Capron, 1981).

Molecular probes and hybridomas: New techniques available in recent years open a large field for the development of useful diagnostic tools.

Several attempts have been undertaken to develop a nucleic acid probe capable of sensitive and specific detection of *F. hepatica* in lymnaeid snails (Shubkin et al., 1991; Heusler et al., 1993; Rognjie, Dimke & Knapp, 1994; Kaplan et al., 1995; Bargues & Masmoudi, 1997; Bargues et al., 1997). Several results appear to be highly promising, although studies are needed to ascertain the value and applicability of these or similar probes for diagnostic purposes in man.

An *F. hepatica* cDNA clone was isolated from an expression library by immunoscreening using calf blood serum. This antigen was expressed in *Escherichia coli* as β-galactosidase fusion proteins. In ELISA this threonine-rich protein detected antibodies from calf by 4 weeks of infection (Soledad Marin et al., 1992), although its specificity needs to be defined.

A fluke-myceloma hybridoma expressing a 57 kDa *F. hepatica* antigen has been described (Hillyer, 1989). This approach for the development of antigen-expressing hybrids for immunoprophylaxis and immunodiagnosis of fascioliasis needs to be explored further (Hillyer, 1993).

For monitoring post-treatment evolution

Worth mentioning are several studies on the detection of antibodies (Hillyer, Bermudez & Ramirez de Arellano, 1984; Garcia-Rodriguez, Martin & Garcia, 1985; Hillyer & Soler de Galanes, 1991; Espino, Millan & Finlay, 1992; Apt et al., 1995) and circulating antigens (Hillyer & Soler de Galanes, 1988; Espino, Millan & Finlay, 1992; Masmoudi et al., 1997) in *F. hepatica* infection after effective treatment for assessing cure in patients with fascioliasis.

It has been shown that after effective chemotherapy, anti-*F. hepatica* antibodies became undetectable. DD and IHA became negative after a longer period (1-2 years after treatment) according to Garcia-Rodriguez, Martin & Garcia (1985).

Hillyer & Soler de Galanes (1988) found by EITB that the serum from humans with fascioliasis recognized two antigenic polypeptides of 17 and 63 kDa; this recognition lasted for at least 3 years of infection, and concretely the 17 kDa antigenic polypeptide disappeared 6 weeks post cure. This antigenic polypeptide was an excellent candidate for the definition of chemotherapeutic cure.

Hillyer & Soler de Galanes (1991) applied FAST-ELISA with FH/E/S antigens and found that humans with fascioliasis had continually elevated antibody levels for over 3 years. Those treated and cured had their antibody levels slowly decrease to nearly normal levels 6-12 months later.

According to Apt et al. (1995), ELISA using a soluble extract of somatic antigen of mature *F. hepatica* was highly effective in post-treatment monitoring. Before treatment with Triclabendazole, 20 (83.3%) of 24 confirmed cases had positive test results. The test results became negative by the second month of treatment in 40% of the cured cases. This percentage increased progressively, reaching 91.3% at 12 months after therapy. In the five cases in which treatment failed, the ELISA results remained positive until the end of the follow-up period (6 months). In three of these cases who accepted a second round of therapy with Triclabendazole six months after the first treatment, the ELISA results became negative in all three six months after parasitologic cure and remained negative until the end of the period.

Masmoudi et al. (1997) detected Fasciola circulating antigen by ELISA in the sera of 10 patients, before treatment with Triclabendazole, but no antigen was detected 3 months after treatment.

INTRADERMAL TESTS

Skin tests employing a crude antigen or purified fraction of *F. hepatica* (Lavier & Stefanopoulou, 1944; Coudert & Triozon, 1958; Biagi, Tay & Portilla, 1959; Pastrizel et al., 1962; Stork et al., 1973; Mora et al., 1980; Piccagia, Lopera & Montes, 1980; Smithers, 1982; Kodama et al., 1991; Apt et al., 1992, 1993; Mas-Coma et al., 1995) have been used. The tests were simple and sufficiently sensitive to propose a diagnosis of the infection (Capron et al., 1973) but not very specific (Stork et al., 1973). This technique is rarely used nowadays.

STOOL ANTIGEN DETECTION TESTS

Youssef, Mansour & Aziz (1991) report the use of hyperimmune serum from rabbits immunized with partially purified worm antigens in CIEP for the detection of parasite antigens in saline extracts of patients’ stools. All saline extracts from fascioliasis patients developed 2-5 precipitin bands. No precipitin band developed with stool extracts of patients with spurious Fasciola infection or other parasitic infections, or from negative controls. Although initially developed for *F. gigantica*, this assay proved to be simple, rapid, sensitive, and specific for the diagnosis of early as well as established fascioliasis infections.

A sandwich ELISA (Fascidig®) was developed for the detection of *F. hepatica* E/S antigens in stool specimens of infected humans (Espino et al., 1993; Espino & Finlay, 1994). None of the patients with *F. hepatica*
showed cross-reactions. Results obtained proved that FASCIDIG show a 93.8% sensitivity, 100% specificity and 100% and 89.5% to 99% predictive values for positive and negative, respectively (ESPINO et al., 1993, 1997a). When patients were retested 2-3 months after treatment, all of the specimens from the parasitologically cured patients were negative by the antigen detection assay, while the specimens from the patients with persisting *F. hepatica* eggs in their stools remained positive (ESPINO & FINLAY, 1994).

Recent data of studies on the dynamics of antigenemia, coproantigens and antibody response to *F. hepatica* indicate that circulating antigens are related to the earliest phases of the infection, whereas coproantigens are related with its more advanced phases. The disappearance of the antigenemia appeared to be linked to an increase of antibody levels and formation of circulating immune complexes (ESPINO et al., 1997b).

The measurement of antigen(s) in faeces appears to be an excellent immunodiagnostic tool, especially for the early prediction of chemotherapeutic success (DIAZ et al., 1997; HILLYER & APT, 1997). Data were presented that showed that nine of ten patients treated and cured were negative for coproantigens by 15 days post-treatment. A problem with this method is that storage at 4°C results in fungal overgrowth and antigen deterioration. It was recommended that a multicenter trial be implemented for the evaluation of the use of coproantigen detection for the immune diagnosis of fascioliasis and the prediction of success of chemotherapy (HILLYER & APT, 1997).

Other techniques

Non-invasive diagnostic techniques which can be used for human diagnosis are radiology, radioisotope scanning, ultrasound (US), computed tomography (CT) and magnetic resonance (MR).

RADIOLOGY

Human *F. hepatica* infection has been diagnosed by abdominal and chest X-ray examination, by oral, percutaneous and intravenous cholangiography, as well as by endoscopic retrograde cholangio-pancreatography (ERCP) (ZARAGOSI MOLINER, 1972; WOOD, STEPHENS & PORTER, 1975; BELGRAIER, 1976; DONELLY & HEDERMAN, 1977; PERA, ASTUDILLO & FERNANDEZ-CRUZ, 1978; PIECUCH, 1979; EISENSCHER & SAUGET, 1980; MORETO & BARRON, 1980; PALACIO VELEZ et al., 1983; SAPUNAR et al., 1983, 1992; VITI et al., 1983; ALIAGA et al., 1984; BONNAUD et al., 1984; HAUSER & BYNUM, 1984; HEREDIA et al., 1984; ORIVE et al., 1984; CONDOMINES et al., 1985; JUAREZ et al., 1985; WONG et al., 1985; APT & TISELL, 1987; MAROY et al., 1987; BEERS et al., 1990; VEERAPPAN et al., 1991; RONDE et al., 1992; HAN et al., 1993; LOPEZ ROSES et al., 1993; RIEDTMANN et al., 1995; DIAS et al., 1996). Nevertheless, the findings are not pathognomonic of *F. hepatica* infection. Dilated and sacculated bile ducts, multiple filling defects consistent with calculi in the bile duct and/or in the gall bladder and multiple areas of alternating narrowing and fusiform dilatation in the intrahepatic radicals have been shown by different types of cholangiography.

In acute fascioliasis ERCP may be normal (TAKÉYAMA et al., 1986). In biliary fascioliasis it may show typical pictures of *F. hepatica* parasites in the gall bladder (BONNAUD et al., 1984; HEREDIA et al., 1984). dilated bile ducts with small, radiolucent, linear or crescent-like shadows, suggesting worms (SAPUNAR et al., 1983; BONNAUD et al., 1984; ORIVE et al., 1984; WONG et al., 1985; BEERS et al., 1990; VEERAPPAN et al., 1991; RONDE et al., 1992; HAN et al., 1993; LOPEZ ROSES et al., 1993; DIAS et al., 1996), and with jagged, irregular margins (BEERS et al., 1990; RONDE et al., 1992; HAN et al., 1993). Similar pictures have been described on percutaneous and perioperative cholangiography (BELGRAIER, 1976; DONELLY & HEDERMAN, 1977; VITI et al., 1983; CONDOMINES et al., 1985; VEERAPPAN et al., 1991). In chronic fascioliasis, ERCP pictures have been misinterpreted as primary sclerosing cholangitis (HACSER & BYNUM, 1984).

ERCP may also be used in follow-up to evaluate the efficacy of medical therapy (DIAS et al., 1996).

RADIOISOTOPE SCANNING

The diagnosis of fascioliasis may also be achieved by radioisotope liver scan (KNODELL, KIRSCH & RYGG, 1972; WOOD, STEPHENS & PORTER, 1975; GALLARDO, SAEZ & ENRIQUEZ, 1976; AGUIRRE et al., 1978, 1981a; MARTINEZ L. DE LETONA et al., 1982; PEÑA SANCHEZ et al., 1982; RIVERA & BERMUDEZ, 1984; GARCIA-RODRIGUEZ et al., 1985; ARJONA et al., 1995). The patterns observed are, however, not specific. A radiocolloid demonstration of the presence of cold areas in the liver in 18 out of 23 cases with *F. hepatica* infection have been reported. Among them, 13 showed positive uptake with 67Ga in the cold areas in a radiocolloid scan (AGUIRRE et al., 1981a). *F. hepatica* infection is one of the causes of «cold areas» in traditional liver scan and positive 67Ga uptake. Similar scintigraphic images using radiocolloid were observed in 4 persons with fascioliasis in whom the differential diagnosis had included metastatic liver cancer, hydatid disease or another parasitic infection (RIVERA & BERMUDEZ, 1984). Increased liver uptake of 67Ga was observed and focal defects were demonstrated by Tc-99 (KNODELL, KIRSCH & RYGG, 1972; PEÑA SANCHEZ et al., 1982; ARJONA et al., 1995) as well as hepatomegaly (4 cases) and splenomegaly (3 cases). Filling defects in the right lobe and in the porta hepatis area on liver scan have also been observed (CHEN & MOTT, 1990).
ULTRASOUND

US has proved useful in the diagnosis of the pathological lesions secondary to *F. hepatica* infection in the liver, biliary tract and gall bladder (EISENSCHER & SAUGET, 1980; VIVES *et al.*, 1982; BONNAUD *et al.*, 1984; KARABINIS *et al.*, 1985; CALGUJ, *et al.*, 1986; BASILY *et al.*, 1989; HODLER & MEIER, 1989; BEERS *et al.*, 1990; AGOTE *et al.*, 1991; PANDOLFO *et al.*, 1991; PULPEIRO *et al.*, 1991; RUIZ REBOLLO *et al.*, 1991; FAWZY, SALEM & OSMAN, 1992; HAMAMOTO *et al.*, 1992; GÜÇLU, DİK & AGAOGLU, 1995; NARAIN *et al.*, 1997). The abnormalities found initially were small stones (HEREDLA *et al.*, 1984). Duct dilation may also be used in follow-up to evaluate the efficacy of medical therapy (BEERS *et al.*, 1990; PULPEIRO *et al.*, 1991; RUIZ REBOLLO *et al.*, 1991; FAWZY, SALEM & OSMAN, 1992) and in the bile ducts (BASILY *et al.*, 1989; BONNAUD *et al.*, 1984), representing worms, that may be confused with stones (HEREDLA *et al.*, 1984). The third type has low signal intensity in T1 WI, is not enhanced, and has high signal intensity in T2 WI, which is similar to fluid-containing inflammatory lesions such as pyogenic abscess. These findings of MR imaging suggest various changes associated with traumatic hepatitis caused by the migration of the worm in the liver, and this diverse signal intensity can be a suggestive finding of fascioliasis.

COMPUTED TOMOGRAPHY

Two types of lesions may be found. One is an abscess-like lesion, with single or more commonly multiple, hypodense nodular areas (PEÑA SÁNCHEZ *et al.*, 1982; DE MIGUEL *et al.*, 1984a; GOEBEL, MARKWALDER & SIEGENTHALER, 1984; TAKEYAMA *et al.*, 1986; HAMAMOTO *et al.*, 1992; PARTIDARIO *et al.*, 1992; HAN *et al.*, 1993; ARJONA *et al.*, 1995; JIMÉNEZ *et al.*, 1995; TCHIRIKHTCHIAN *et al.*, 1997). The second type lesion is highly suggestive of fascioliasis in an appropriate clinical setting and consists of tunnel-like branching hypodense areas, which are better delineated after contrast injection (DE MIGUEL *et al.*, 1984a; PAGOLA SERRANO *et al.*, 1987; ARJONA *et al.*, 1995). They result from the migration of the parasite through the liver and therefore CT scan can be a useful tool for the diagnosis of the disease, fundamentally of invasive fascioliasis (HAN *et al.*, 1993; ARJONA *et al.*, 1995; JIMÉNEZ *et al.*, 1995).

CT may also be used in follow-up to evaluate the efficacy of medical therapy (DE MIGUEL *et al.*, 1984a; TAKEYAMA *et al.*, 1986; PAGOLA SERRANO *et al.*, 1987). Several months after treatment, a marked improvement in the CT images has been shown by different investigators. The multiple hypodense areas in the liver were reduced significantly in number and size (DE MIGUEL *et al.*, 1984a; GOEBEL, MARKWALDER & SIEGENTHALER, 1984; TAKEYAMA *et al.*, 1986; PAGOLA SERRANO *et al.*, 1987). CT may also be used for the diagnosis (HAN *et al.*, 1996; TCHIRIKHTCHIAN *et al.*, 1997). According to HAN *et al.* (1996), hepatic fascioliasis produces three types of lesions in MR images arranged in tract-like fashion. The outermost area presents as an iso-signal area in T1 WI, with slightly higher signal intensity in T2 WI and diffuse enhancement after i.v. contrast. The second type presents as a well-defined low signal area in T1 WI, not enhanced, and also shows low signal intensity in T2 WI. The third type has low signal intensity in T1 WI, is not enhanced, and has high signal intensity in T2 WI which is similar to fluid-containing inflammatory lesions such as pyogenic abscess. These findings of MR imaging suggest various changes associated with traumatic hepatitis caused by the migration of the worm in the liver, and this diverse signal intensity can be a suggestive finding of fascioliasis.

MAGNETIC RESONANCE

MR may also be used for the diagnosis (HAN *et al.*, 1996; TCHIRIKHTCHIAN *et al.*, 1997). According to HAN *et al.* (1996), hepatic fascioliasis produces three types of lesions in MR images arranged in tract-like fashion. The outermost area presents as an iso-signal area in T1 WI, with slightly higher signal intensity in T2 WI and diffuse enhancement after i.v. contrast. The second type presents as a well-defined low signal area in T1 WI, not enhanced, and also shows low signal intensity in T2 WI. The third type has low signal intensity in T1 WI, is not enhanced, and has high signal intensity in T2 WI which is similar to fluid-containing inflammatory lesions such as pyogenic abscess. These findings of MR imaging suggest various changes associated with traumatic hepatitis caused by the migration of the worm in the liver, and this diverse signal intensity can be a suggestive finding of fascioliasis.

Clinical orientative diagnosis

The clinical presentation may be helpful for the diagnosis, although only parasitological findings can confirm
the diagnosis of the infection and a positive serological test permits a presumptive diagnosis. Fascioliasis is frequently considered among the differential diagnoses in a well-known endemic area. However, in areas where the disease is rarely reported or absent, physicians may not consider this diagnostic possibility. History of ingestion of raw wild or cultivated watercress or other vegetables, or other contaminated food or water may be suggestive of the infection (CHEN & MOTT, 1990).

According to ARONA et al. (1995), the clinical situations in which the diagnosis of *F. hepatica* infection should be considered are: history of watercress ingestion, eosinophilia, fever of unknown origin, atypical abdominal pain, focal intrahepatic lesions, granulomatous hepatitis, serositis and meningitis with peripheral or fluid eosinophilia, family history of fascioliasis, biliary colic or cholangitis, and normal ultrasonography. Eosinophilia has also been successfully used for a first selection in general surveys (Git.-BENITO et al., 1991; Git.-BENITO, 1994).

In the acute phase the clinical presentation includes fever, pain in the right hypochondrium, prominent eosinophilia with leucocytosis, anaemia and a moderately to significantly high ESR. Increase in AKP, GPT, GOT and γ-globulin may or may not be present. In this phase, CT-scan and/or a positive serological reaction against *F. hepatica* antigen are most suggestive of the diagnosis (CHEN & MOTT, 1990).

In the chronic (latent and obstructive) phase the clinical picture is attenuated and easily confused with other diseases. The classic pattern includes: vague gastrointestinal complaints, pain in the right hypochondrium or epigastrum, cholecystitis, cholangitis and bile duct or gall bladder stones. The liver is usually enlarged with or without pain on palpation. Ascites may appear in advanced cases. Radiology, radioisotope, US, CT and MR are of value in confirming the diagnosis. Definitive diagnosis can be made by finding eggs in the stool or biliary drainage, or by finding egg granulomas or sections of the fluke in the liver tissue sections, adult worms in the bile ducts or eggs in the bile through exploratory laparotomy (CHEN & MOTT, 1990).

In both the acute and chronic infections, ectopic localization of the parasite may cause a confusing clinical presentation.

In the differential diagnosis, febrile diseases such as typhoid, brucellosis, acute schistosomiasis, hepatitis and hepatic abscess should be ruled out. Other parasitic infections causing eosinophilia, such as schistosomiasis, clonorchiasis, trichinellosis, hydatid disease, visceral larva migration and Loefler’s syndrome, as well as eosinophilic leukaemia, must be excluded (FACEY & MARDEN, 1960; HARDMAN, JONES & DAVIES, 1970; WEI, 1984).

Care must be taken to know which human parasites exist in the area. As pointed out by ESTEBAN et al. (1997a), the coexistence of *F. hepatica* infection and different recognized symptoms-inducing and/or pathogenic parasites clearly suggests the inappropriate of the clinical-symptomatological picture for the diagnosis of fascioliasis. From the diagnostic perspective as well, the coexistence of *F. hepatica* and several helminths is also of interest, due to the possible induction of cross-reactions in serological tests.

TREATMENT

There was no consensus about the therapy of choice for human fascioliasis until very recently when, after proving that appropriately dosified Triclabendazole is 100% curative in humans, Ciba (now Novartis Pharma) came to an agreement with WHO to make this drug available for human use. At any rate, there are many other drugs today available for human use that are also effective against *F. hepatica*.

Many drugs were used in the past that have now been abandoned, including gentian violet, antimony salts and quinine. Moreover, bithionol is apparently no longer being manufactured, despite being one of the most used drugs for human treatment and even having been considered the drug of choice for years, despite its long treatment course.

No new drugs have been developed during the last 15 years for fascioliasis treatment, and drug resistance in *F. hepatica* has already been reported to affect the efficacy of the drugs against immature stages in animals. Fortunately, recently-tested drug combinations have shown their synergistic action increasing efficacy against immature flukes and removing resistant flukes, which may reduce the development of resistance (BORAY, 1994).

Although the cure is possible in some cases without specific therapy, asymptomatic patients should also be treated to avoid the risk of future complications (ARONA et al., 1995).

Emetine derivatives

Emetine derivatives, the classic drugs, were used widely and continue to be used today, given intramuscularly or subcutaneously: emetine at doses of 1-10 mg/kg a day for 10 days (PADILLA ANTONI, SALEME & JORRATT, 1972; COURAUD et al., 1975; PICOAGA, LOPERA & MONTES, 1980; APT & TISELI, 1987; SICILIANO et al., 1989; BORIE et al., 1990; CHEN & MOTT, 1990); dehydroemetine, at a usual dose of 1 mg/kg daily for 10-14 days, was even considered the therapy of choice a few decades ago (PAUTRIZEL et al., 1964; GIRAUDET, 1968; FARID, KAMAL & WOODY, 1988; FARID et al., 1990; CHEN & MOTT, 1990; AYADI, MAKNI, BEN SAID, 1997) and has sometimes shown to be more effective than bithionol (ALVAREZ-CHACON et al., 1992).

Emetine derivative therapeutic effects in eliminating the infection as well as in improving the symptoms are well known, but they cause a variety of toxic manifestations involving the heart, liver and digestive tract. Fre-
quent changes are seen in the electrocardiogram. Hypotension sometimes occurs during treatment. Dehydroemetine has a shorter tissue half life and disappears more rapidly from the heart and liver as compared with emetine (GOODMAN, HENDERSON & CULLITY, 1973). No deaths have been reported due to emetine derivative treatment of *F. hepatica* infections (CHEN & MOTT, 1990).

Aminoquinoline derivatives

Chloroquine has been used to treat *F. hepatica* infection, although no cidal effects on the flukes have been shown. However, in the acute phase, chloroquine treatment improved the symptoms dramatically. With the disappearance of fever, the patients' general condition improved, and hepatomegaly, eosinophilia and erythrocyte sedimentation rate were reduced. Cure of the infection has not been documented (FACEY & MARSDEN, 1960; HARDMAN, JONES & DAVIES, 1970; SUTER et al., 1979; PICOAGA, LOPERA & MONTES, 1980).

Xylol derivatives

Hexachloro-para-xylol has been effectively used at a dose of 100-150 mg/kg body-weight in 4 doses at 15 min intervals in Romania (BABADZHANOV et al., 1974), at a dose of 60 mg/kg daily for 5 days in the former Soviet Union (KHASHMOV & KAMARDINOV, 1975; RAKHMANOV, 1987), and at a dose of 50-80 mg/kg body weight daily divided into 3 doses given orally for 7 consecutive days in China (WANG et al., 1981; SUN, CHAI & CHENG, 1984). The side effects include gastrointestinal complaints and dizziness.

Halogenated phenol derivatives

In recent literature, bithionol is proposed as the drug of choice for the treatment of *F. hepatica* infection (KONDILI, KIRSCH & RYGG, 1972; PEÑA SANCHEZ et al., 1982; ANTON ARANDA, CIA LECUMBERRI & RIVERO PUENTE, 1985; AREJOA et al., 1985; FUJITA et al., 1985; FARID, KAMAL & WOODY, 1988; GARCIA-RODRIGUEZ et al., 1989; CHEN & MOTT, 1990; RAHMAN, FADELI & ABOU BASHA, 1990; BACQ et al., 1991; BASSIOUNY et al., 1991; KODAMA et al., 1991; ANONYMOUS, 1993; ARIONA et al., 1995; ABREU et al., 1996). It is usually applied at a dose of 30-50 mg/kg daily, divided into 3 oral doses on alternate days for 20-30 days (ANONYMOUS, 1993), although other dosages have been used (PEÑA SANCHEZ et al., 1982; FARID, KAMAL & WOODY, 1988; FARID et al., 1990; BASSIOUNY et al., 1991; KODAMA et al., 1991). In cases of fascioliasis resistant to emetine and praziquantel treatment, bithionol achieved cure in dosages of 50 mg/kg daily for 10 alternate days (GRADOS & BERROCAL, 1977) or 40 mg/kg daily for 14-15 alternate days (BHATTACHARYYA, 1985; ABREU et al., 1996). Occasionally, the patients required a second course to obtain a complete cure. The side effects, including diarrhoea, anorexia, nausea, vomiting, pruritus, urticaria and abdominal pain, are usually mild, and drug withdrawal is not necessary.

Niclofolan is widely and successfully used for veterinary purposes in China (CHEN & MOTT, 1990). Nevertheless, two oral doses of niclofolan at 2 mg/kg body weight for 3 days apart (ECKHARDT & HECkers, 1981) and 0.5 mg/kg twice a day for 3 days (RUSHIE, LOK & SHERLOCK, 1982) has been applied for human treatment. The side effects include sweating, palpitation, nausea, diffuse upper abdominal pain, itching and jaundice with dark urine. The niclofolan shows such a toxicity that clinical use cannot be recommended (CHEN & MOTT, 1990).

Imidazole derivatives

Daily oral doses of 1.5 g of Metronidazole for 13 and 28 days showed to be effective, but a smaller total dose of 4 g was reported to have failed to cure a chronic infection (NIR-AKHTAR & TABHI, 1977; ECKHARDT & HECkERS, 1981; ARAFA & LASHEN, 1993).

Albendazole, which is efficient against animal fascioliasis, has a high rate of failure in human infections (APt et al., 1991).

Triclabendazole is effectively used in animals against both adult and immature *F. hepatica*. It has also been reported as a very effective drug against both the acute and the chronic forms of fascioliasis in humans (ROBINSON, 1985; WESSELY, REISCHIG & HEINERMANN, 1987; MARKWALDER et al., 1988; WESSELY et al., 1988; LEF BRAS et al., 1989; LOUTAN et al., 1989; RIPERT, 1990; BECHTEL et al., 1992; LARDI & BORAY, 1992; PICOT et al., 1992; RONDE et al., 1992; APT et al., 1995; HAM-SIOUDA et al., 1995, 1997; OSMAN, HELMY & MEGIE-HED, 1995; DIAZ et al., 1997; TCHERIKHITCHIAN et al., 1997). The recommended dose is two separate regimens of 10 mg/kg of body weight. Clinical tolerability is excellent, although a transient febrile episode with reversible liver function alteration has been observed (WESSELY, REISCHIG & HEINERMANN, 1987; WESSELY et al., 1988; MARKWALDER et al., 1988).

According to APT et al. (1995), 24 asymptomatic individuals with chronic hepatic fascioliasis were treated with Triclabendazole at a single oral dose (10 mg/kg of body weight) after an overnight fast. Nineteen (79.2%) of the 24 patients were egg-negative two months after treatment. Three of five cases with eggs in faeces after the first treatment were retreated and the parasitologic cure was achieved. The satisfactory results obtained with Triclabendazole, a cure rate of 79.2% when first used and 100% after a second round of therapy, the ease of a single oral dose, its tolerability, and the absence of side effects, allowed us to consider it as a possible drug of choice for treatment of chronic fascioliasis (HILLFER & APT, 1997). According to the pharmacokinetics of Triclabendazole and its principal metabolite, the sulfoxide radical, it seems that more of the drug is adsorbed if it is
administered after meals; when two courses of Triclabendazole of 10 mg/kg each were administered after meals on the same day, cure rates of 100% were obtained (APT et al., 1995).

At present, a formulation appropriate for human use is jointly being developed by Novartis Pharma and the World Health Organization. A series of several clinical trials, including about 350 patients, have been completed in Egypt, Cuba, Bolivia, Peru, Chile and Iran. Trials were carried out under a single core protocol. A number of different dosing regimens were employed to provide information about the most appropriate dosing schedule. Pharmacokinetic studies indicated that the peak plasma concentrations, which occurred within 3 hours, were some three-fold higher following post-prandial dosage. The primary efficacy parameter was the clearance of parasite eggs from faeces. A single oral dose of 10 mg/kg has cured at least 85% of cases of chronic fascioliasis when taken after a meal. At this effective dose, the Triclabendazole was well tolerated. Results of renal function and haematological tests remained essentially normal throughout treatment. Minimal, transient increases in serum concentrations of liver enzymes, returning to normal by day 30, were reported in some patients. Clinical adverse experiences most frequently encountered were related to the gastrointestinal tract, epigastric, abdominal or right hypochondrial pain and biliary colic (70% of the patients), nausea and vomiting (15%). This is likely to be due to expulsion of dead or damaged worms from the hepatobiliary system rather than to the drug itself. Treatment with antispasmodic was shown to reduce pain and to minimise the risk of jaundice (LABURTE et al., 1997).

Isoquinoline-pyrazine derivatives

Praziquantel is today the drug of choice for human trematode infections and it is even effective against a broad range of helminths (PEARSON & GUERRANT, 1983; HARNET, 1988). Worth mentioning is that Fasciola may be the only genus of trematode that has practically no response to praziquantel. There are no randomized trials in human fascioliasis and the results in uncontrolled studies are controversial. Whereas some authors mentioned cases of successful treatment (ALCOBA et al., 1988; CHEN & MOTT, 1990; MARTI & GARCIA, 1990; ATALAY et al., 1993; MOREAU et al., 1995; AYADI, MAKNI & BEN SAID, 1997; QUENEAU et al., 1997), others have reported praziquantel failures (BHATTACHARYYA, 1985; ESPINOS, REÑE & CONDOMINES, 1985; KNOBLOCH, 1985; KNOBLOCH et al., 1985; FARAG et al., 1986; FARID et al., 1986; WESSELY, REISCHIG & HEINERMANN, 1987; ATA et al., 1988; FARID, KAMAL & WOODY, 1988; FARID, KAMAL & MANSOUR, 1989; WESSELY et al., 1988; GARCIA-RODRIGUEZ et al., 1989; CHEN & MOTT, 1990; RIBERT, 1990; YADEGARY, FORGHANPARAST & ASSMAR, 1992; ARJONA et al., 1995; ABREU et al., 1996), even at high doses: 75 mg/kg daily for 1-3 days (YADEGARY, FORGHANPARAST & ASSMAR, 1992; ARJONA et al., 1995); 75 mg/kg daily for 5-7 days (WAHN & MEHLDORH, 1984; FARID et al., 1986; WESSELY et al., 1988; FARID, KAMAL & MANSOUR, 1989; MOREAU et al., 1995); 75 mg/kg body weight divided into 3 doses over a 1-10-day period (SCHIAPPACASSE, MOHAMMADI & CHRISTIE, 1985; FARID, KAMAL & WOODY, 1988). The ideal duration of therapy is not known, although a treatment for 1-7 days has been recommended. Praziquantel is well tolerated; side effects like pruritus, abdominal discomfort, and nausea have been reported, but it was not necessary to withdraw the medication.

Other drugs

Mebendazole, in a daily dose of 4 g for 3 weeks, was reported to have cured an F. hepatica infection diagnosed clinically and serologically in the invasive phase (DUGERNIER et al., 1986).

Raf oxanide, or pentachlorosalicylanilide, a salicylanilide derivative, was used in the treatment of a child with fascioliasis (YURDAKOK, 1985).

Prednisone at 5-10 mg by day has been advocated as an adjunct therapy before the administration of fasciolicidal drugs in acutely ill children or those who appear toxic (FARID, KAMAL & WOODY, 1988).

ACKNOWLEDGEMENTS

The present review was made possible by a Project (Contract No. TS3-CT94-0294) of the STD Programme of the Commission of the European Communities (DG XII: Science, Research and Development), Brussels, EU, the Programme of Scientific Cooperation with Latin America of the Instituto de Cooperación Iberoamericana of the Agencia Española de Cooperación Internacional (I.C.I.-A.E.C.I.), Madrid, and Project No. UE96-0001 of the Dirección General de Investigación Científica y Técnica (DGICYT), Spanish Ministry of Education and Science, Madrid.

REFERENCES

A review of human fascioliasis

Aguirre (C.), Alberola (L.), Gonzalez (P.) & Merino (J.), 1981. – Scintigraphic evaluation of the liver in Fasciola hepatica with radiocolloid and 67Ga Citrate. European Journal of Nuclear Medicine, 6: 57-58. [12]

Ahrnls (H.P.) & Berling (H.), 1968. – Parasitärer Befall der Leber und Gallenwege mit dem grossen Leberegel und Hygiene. 52: 532-535. [41]

Aliciano (H.) & Apte (W.), 1989. – Algunos antecedentes sobre la fascioliasis animal y humana. Monografias de Medicina Veterinaria, 11: 14-29. [18]

Aliciano (H.), Diaz (M.), Quiroga (J.), Arriola (J.M.) & Prieto (J.), 1984. – Enfermedad pulmonar eosinofila por Fasciola hepatica. Descripción de un caso y revisión de la literatura. Medicina Clinica (Barcelona), 82: 764-767. [21]

Aliev (V.M.) & Khakimov (A.R.), 1972. – [Complication caused by Fasciola hepatica (case report)]. Khirurgiya, 48: 134-135. (in Russian) [22]

Alazrabi-Chacon (R.), Garcia-Ramos (J.), Cruz-Otero (M.C.), Wong-Chu (M.), Cabrera-Bravo (M.), Gomez-Gomez (J.V.) & Gamez-Andina (V.), 1992. – Fasciolosis in the niños. Estudio de 10 casos. Boletin Médico del Hospital Infantil de México, 49: 365-371. [23]
we have already mentioned that fascioliasis is relatively common in the human population, and it is estimated that over 150 million people are infected worldwide. the disease is caused by the fluke fasciola hepatica, which is transmitted to humans through the consumption of contaminated water or food. the fluke enters the duodenum and matures in the liver, causing damage to the liver cells and leading to symptoms such as jaundice, abdominal pain, and fever.

the clinical presentation of fascioliasis can vary widely, ranging from asymptomatic to severe illness. the symptoms are often related to the degree of liver damage caused by the fluke. in some cases, the infection may be chronic and asymptomatic, while in others, it can lead to complications such as portal hypertension and liver failure.

the natural history of fascioliasis is characterized by a chronic course, with periods of remission and exacerbation. the infection can persist for years, and liver damage can accumulate over time. in severe cases, the infection can lead to complications such as portal hypertension, hepatic failure, and even death.

the treatment of fascioliasis is primarily focused on eliminating the fluke from the liver and preventing further damage to the liver. treatment options include praziquantel, a medication that kills the fluke, and supportive care to manage symptoms and complications. however, the effectiveness of treatment can vary depending on the stage of infection and the severity of liver damage.

in conclusion, fascioliasis is a significant public health problem in many parts of the world. the disease is caused by a fluke that infects the liver, leading to chronic damage and potentially lifethreatening complications. prevention and early treatment are essential to prevent the progression of the disease and its associated health risks.
por Fasciola hepatica. Revista Española de las Enfermedades del Aparato Digestivo, 36: 531-542. [116]

CARMOL (M.C.), CARMO A (P.M.), FERNANDEZ (T.), BLAS (J.L.), 1997. - Parasitosis en dos pacientes con eosinofilia. Enfermedades Infecciosas y Microbiología Clínica, 15: 425-426. [118]

CHAMPERI (J.), BONNETON (G.), GUIDELLI (H.), FRANCO (A.), MAIRE (J.M.) & MIKLER (F.), 1975. - Distomatose de la voie biliaire, typhoidose hépatique et lithium vésiculaire. Revista Nueva Presse Médicale, 4: 2111-2112. [120]

CHANDLER (J.), BASTARD (J.P.), AMBROISE-THOMAS (P.), 1982. - Serodiagnostic de Fasciola hepatica humaine par micro-ELISA face a des antigènes homologues humains et bovins. Revue d'Hygiène et de Maladies Infectieuses, 20: 145-147. [121]

CHEN (M.G.) & MOHT (K.E.), 1990. - Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Tropical Diseases Bulletin, 87: R1-R38. [124]

CONTRERAS (M.C.) & SALINAS (M.C.), 1987. - Inmunodiagnóstico de fasciolosis humana. Estudio comparativo de las reacciones de fijación de complemento y hemoaglutinacion indirecta. Boletín Chileno de Parasitologia, 42: 63-67. [131]

COUCHAR (J.L.), PEREZ (R.), CASARIEGO (E.), VARELA (J.), LOPEZ (M.J.) & TORRES (J.), 1990. - Eosinophile pleural effusion caused by Fasciola hepatica. Enfermedades Infecciosas y Microbiología Clínica, 8: 258-259. [134]

COSME (A.), MARCIOS (J.M.), GALVANY (A.), ARRODA (J.L.), BEN-GORECHE (M.G.), ALZATE (L.F.) & DIAZ (A.), 1979. - Obstrucción del colédoco por Fasciola hepatica. Medicina Clinica (Barcelona), 73: 438-442. [135]

COSME-CONTREIRA (J.), BURGA-HERNANDEZ (A.), GILDEH-MORENO (L.) & BAZAN-VASQUEZ (C.), 1971. - Estudio clínico y epidemiológico de la distomatosis hepática en escolares de la zona rural de Cajamarca. Revista Peruana de Pediatría, 29: 165-171. [137]

COULAUD (J.P.), SAPHOT (G.), DRUSFIELD (A.), GARMISCH (B.) & PAVUL (M.), 1970. - Manifestations neurologiques et cardiaques au cours d’une distomatose (à propos d’une observation). Annales de Médecine Interne, 121: 729-736. [139]

CROONE (J.), CHAPMAN (G.) & GALLACHER (N.D.), 1982. - Evolution of fasciolasis after eating wild watercress. Australian and New Zealand Journal of Medicine, 12: 525-527. [141]

DAN (M.), LIECHTENSTEIN (D.), LVCHCHIK (J.), STAVROWSKY (M.), JEDWAB (M.) & SHIBDSP (S.), 1981. - Human fasciolasis in Brazil. An imported case. Israel Journal of Medical Sciences, 17: 430-432. [143]

DANIS (M.), NOIZ (J.P.) & CHANDLER (J.), 1985. - La distomatose à Fasciola hepatica. II. La fasciolose humaine en France. Action Veterinaire, 907: VII-VIII. [144]

DHURAY (C.), PAOLAGG (J.A.), CERU (B.M.), BENHAMOU (G.), MORIN (T.) & GONSET (F.), 1975. - Association d’hépatite hépatique (3 kystes) et de distomatose chéloédéique. Semaine des Hopitaux, Paris, 51: 2735-2737. [146]

DEELDER (A.M.) & PLOW (J.S.), 1975. - An immunofluorescence reaction for Fasciola hepatica using the defined antigen substrate spheres (DASS) system. Experimental Parasitology, 37: 173-178. [147]

DEILIGR (F.), CARRASCO (J.), SADABA (F.) & BUITAMANTE (V.), 1984b. - Un nuevo caso de distomatosis hepatica en Argentina. Medecina Clinica (Barcelona), 83: 869. [149]

A review of human fascioliasis

Diaz (J.), Pena (B.), Lastre (M.), Rivera (L.) & Perez (O.), 1990.—Fascioliasis humana epidémica. Cuba 1983. VI. Estudio clínico de 40 niños del Hospital Provincial de Sagua La Grande. GEN, 44: 385-388. [152]

Dombart (A.), Modai (J.), Bisson (M.) & Duplo (B.), 1971.—Distomatose autochtone à expression neurologique et cardiologique. Presse Médicale, 79: 582-583. [154]

Druggicorn (O.), Yasadi (T.), Draggicorn (G.) & Tintarulanc (L.), 1971.—[Clinical and epidemiological aspects encountered in eight patients with fascioliasis]. Microbiologia, Parasitologia, Epidemiologia, 16: 455-460. (in Romanian) [157]

Dugernier (T.), Geurel (A.), Bragion (G.), Cesbron (J.Y.) & Coche (E.), 1986.—Human fascioliasis—cure by mebendazole—a case report. Gastroentérologie Clinique et Biologique, 10: 513-516. [160]

Duron (J.J.), Benhamou (G.) & Nardi (C.), 1975.—Association d'un kyste hydatique et d'une distomatose du foie. Nouvelle Presse Médicale, 4: 1364. [161]

Edvivarrieta (O.), Palacios (M.), Kutz (M.) & Garde (J.A.), 1982.—[Microabcesos hepáticos por Fasciola. Presentación de un caso]. Anales del Instituto Médico, 17: 61-65. [162]

Espino (A.M.), Dumenico (B.E.), Marchet (R.), Reyes (K.) & Finlay (C.M.), 1993.—Detection of infection by Fasciola hepatica in humans employing the kit diagnostic FASCIDIG. In: XI Congreso Latinoamericano de Parasitología y I Congreso Peruano de Parasitología (Lima, Perú). Libro de Resúmenes: 51. [176]

Espino (A.M.), Diaz (A.), Fernandez (N.), Perez (A.), Otero (O.) & Finlay (C.M.), 1997a.—Immunodiagnostic of the fascioliasis humana y su aplicación en brotes epidémicos. In: XIII Congreso Latino Americano de Parasitología (FLAP) (La Habana, Cuba). Libro de Resúmenes: 129-130. [177]

Espino (A.M.), Diaz (A.), Pelayo (L.), Dumenico (B.) & Finlay (C.M.), 1997b.—Dinámica de antigenemia, coproantígenos y respuesta de anticuerpos en fascioliasis humana y animal. In: XIII Congreso Latino Americano de Parasitología (FLAP) (La Habana, Cuba). Libro de Resúmenes: 130. [178]

Espinos (J.C.), Reine (J.M.) & Condoromines (J.), 1985.—Fasciola hepatica. Tratamiento con praziquantel. Gastroenterología y Hepatología, 8: 325-326. [179]

Esteban (J.G.), Flores (A.), Angles (R.), Strauss (W.), Agurrre (C.) & Mas-Coma (S.), 1997b.—A population-based coprological study of human fascioliasis in a hyperendemic area of the Bolivian Altiplano. Tropical Medicine and International Health, 2: 695-699. [181]

Faehrmann (M.), Hambarus (L.), Linquist (L.), Paulsen (O.) & Persson (P.), 1981.—[The liver fluke — first imported case?]. Lakartidningen, 78: 961-962. (in Swedish) [185]

Fain (A.), Van Mervenne (N.), Janssens (P.G.), Croquet (P.), Bent (B.), Delmoufier (J.P.) & Stoockart (W.), 1969.—Notes sur un foyer de distomatose hépatique humaine dans la région du Borinage en Belgique. Louvain Médical, 88: 215-227. [186]
A review of human fascioliasis

About a case of human hepatic distomatosis. *Bulletin of the Institute of Maritime and Tropical Medicine in Gdynia*, 40: 95-96. [263]

KAMARDOV (Kh.K.), 1984.- [Serological diagnosis of human fascioliasis]. Zdravookhranenie Tadzhikistana, 4: 78-80. (In Russian) [268]

KAMARDOV (Kh.K.), 1985.- [Human fascioliasis]. *Meditsinskaya Parazitologiya i Parasitarnye Bolezni*, 5: 17-20. (In Russian) [269]

KNOBLOCH (J.), 1985.- Human fascioliasis in Cajamarca/Peru. II. Humoral antibody response and antigenemia. *Tropical Medicine and Parazitology*, 36: 91-93. [289]

KORBELE (T.), 1981/82.- [Epideimology and forecasting of fascioliasis in Hungary]. *Parazitologija Hungarica*, 14: 17-34. (In Hungarian) [292]

KATZ (N.), CHAVES (A.) & PELLEGRINO (J.), 1972.- A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. *Revista do Instituto de Medicina Tropical de Sao Paulo*, 14: 397-402. [275]

KRISTOFERITSCH (W.), WESELLY (P.), AUEER (H.) & PICHER (O.), 1982.- [Neurologic and cardiac symptoms in a case of human fascioliasis]. *Archiv Patholog*, 52: 59-61. (In Russian) [294]

LABORDE (M.), 1985.- Contribution a l'étude de la distomatose a *Fasciola hepatica* dans le Sud-Ouest de la France. Thèse Doctoral d’Etat en Médecine, Université de Bordeaux II. Thèse No 487. Bordeaux, France. [298]

LAIRD (P.P.) & BORAY (J.C.), 1992.- Human fascioliasis successfully treated with triclabendazole. *Australian and New Zealand Journal of Medicine*, 22: 45-47. [300]

KASHISHOY (D.M.) & KAMARDOV (Kh.K.), 1975.- [Treatment of fascioliasis with hexachloroparaxylene in conjunction with antibiotics]. *Sovetskaia Meditsina*, 6: 142-143. (In Russian) [283]

KOBLE (T.), 1981/82.- [Comparison of human fascioliasis]. *Parasitologia Hungarica*, 14: 17-34. (In Hungarian) [292]

KOVALENKO (V.L.), KIRYACHKOV (V.V.), LUKIN (V.V.), 1975.- Comparative examinations. *Parasitologia Hungarica*, 47: 24-25. (In Russian) [273]

SAVARASEWICZ (J.), KOROS (K.), 1973.- [Serological diagnosis of human fascioliasis]. *Zdrowookhranenie Tadzhikistana*, 4: 78-80. (In Russian) [268]

SAVARASEWICZ (J.), KOROS (K.), 1973.- [Serological diagnosis of human fascioliasis]. *Zdrowookhranenie Tadzhikistana*, 4: 78-80. (In Russian) [268]

L. BRAS (M.), BELYOT (J.), BRESSY (H.), TRIBOLLEY (J.), SIARD (C.), COURNOYER (B.) & RIPART (C.), 1989. - Traitement de la Fasciolose humaine par le triclabendazole. Médecine et Chirurgie Digestives, 18: 477-497. [303]

LIBACQ (E.), GILOR (L.), DUSMET (V.) & MERYNNE (N. VAN), 1971. - [L'hydroxyde induit de Fasciola hepatica in humans]. Acta Gastroenterologica Belgica, 34: 322-328. (in French) [304]

LOPEZ ROSES (L.), ALOSO (D.), LUGOZ (F.), MATEOS (A.), BAL LOUTAN (L.), BOUVIER (M.), ROJANAWLsT (B.), STALDER (H.), MAKLED (M.K.I.), KHALlL (H.M.), EL-SIBAE (M.M.), ABDALLA (Z.Q.), MA GOS (P.), LE BRAS (M.), BEYLOT (J.), BIESSY (H.), TRIBOULEY (J.), SICARD (M.), CAPRON (A.) & FONTAINE (G.), 1972. - Une forme neurologique exceptionnelle de distomatose a Fasciola hepatica chez l'enfant. Semaine des Hopitaux, Paris, 48th Year, 49/12 Années de Pédriatrie, 39: 3253-3256. [306]

MARTI (J.) & GARCIA (C.), 1990. - Infestation por Fasciola hepatica: a propósito de 2 casos. Anales de Medicina Interna (Madrid), 7: 489-490. [322]

MARTINEZ L. DE LETONA (J.), FERRIZ MORENO (P.), MASA VAZ QUEZ (C.) & PEREZ MAUSTI (R.), 1982. - Fasciolosis hepatica: estudio de tres casos. Medicina Clinica (Barcelona), 79: 277-279. [323]

MARTINEZ O. DE Zarate (M.), GALDIZ (J.), 1984. - Broncospasmo como forma de inicio de una fascioliosis hepatica. Medica Clini ca (Barcelona), 82: 777. [324]

MERRIN (M.), 1989. - Infestation por Fasciola hepatica: a propósito de 2 casos. Anales de Medicina Interna (Madrid), 7: 489-490. [322]

MEYERS (E.M.), 1983. -

MOBBIEU (P.), 1983. - Distomatose hepatique. Der Chirurg, 58: 686-688. (in German) [315]

MOBIEU (P.), 1983. - Distomatose hepatique. Der Chirurg, 58: 686-688. (in German) [315]

MOLANO (J.L.), 1983. - Serological diagnosis of liver tumor. Der Chirurg, 58: 686-688. (in German) [315]

Monsieur (M.J.), 1983. -

MOSSEY (C.), 1988. - Infestation por Fasciola hepatica: a propósito de 2 casos. Anales de Medicina Interna (Madrid), 7: 489-490. [322]

MORTIN (J.) & GARCIA (C.), 1990. - Infestation por Fasciola hepatica: a propósito de 2 casos. Anales de Medicina Interna (Madrid), 7: 489-490. [322]

MARTINEZ L. DE LETONA (J.), FERRIZ MORENO (P.), MASA VAZ QUEZ (C.) & PEREZ MAUSTI (R.), 1982. - Fasciolosis hepatica: estudio de tres casos. Medicina Clinica (Barcelona), 79: 277-279. [323]

MARTINEZ O. DE Zarate (M.), GALDIZ (J.), 1984. - Broncospasmos como forma de inicio de una fascioliosis hepatica. Medicina Clinica (Barcelona), 82: 777. [324]

échotonométrique à un stade précoce. Gastroentérologie Clinique et Biologique, 7: 753. [336]

Naya (C.), MélULicH (M.A.) & MArtI (M.), 1974.—Fascioliasis hepática: hallazgo de un caso de distomatosis del conducto biliar. Revista de Investigación Clínica, 26: 181. [354]

Nicholas (L.J.), 1970.—Obstruction of the common bile-duct by Fasciola hepatica. British Journal of Surgery, 57: 544-546. [355]

NoYa (M.), Lema (M.), CASTillO (J.), RodriGuez-CamaseLLe (L.) & ALi-ShaBani (W.M.), 1982.—Parasitación por Fasciola hepatica. Claves diagnósticas. Revista Clínica Española, 166: 177-179. [358]

Oria (M.), NOria (A.), DE LA TorRE (F.) & Guerra (L.), 1987.—Fasciola hepatica. A propósito de un caso. Revista de la Asociación Castellana del Aparato Digestivo, 3: 145-151. [360]

Orive (V.), GOYENECHE (J.), COsIe (A.), Alzate (L.F.), Enciso (C.), ARENAS (K.J.), 1984.—Aportación de la CPRÉ al diagnóstico de la fascioliasis crónica (Abstract). Revista Española de las Enfermedades del Aparato Digestivo, 65 (supl. II): 58. [361]

OsmAn (M.M.), SHEHAS (A.Y.), El-MaskRY (S.A.), HelMY (M.H.) & FarEmAG (H.F.), 1995.—Evaluation of Fasciola excretory-secretory (ES) product in diagnosis of acute human fascioliasis by IgM ELISA. Tropical Medicine and Parasitology, 46: 115-118. [364]

Ozkan (A.U.) & Genc (S.), 1979.—[A case of subcutaneous fascioliasis (the first case in Turkey)]. Ankara Universitesi Tip Fakültesi Mecmuasi, 32: 405-409. (in Turkish) [365]

Padilla Antoni (F.), SALEni (A.) & JOBBRATTI (M.), 1972.—Fasciola hepatica — a propósito de una observación. Galicia Clinica, 44: 149-155. [366]

PAiller (S.), PuyGAuTHier-TRouBAS (D.), BonnIN (A.), MarcHELM (C.), CaMBeLlyNcK (P.), THOnAnES (H.) & PINoN (J.M.), 1990.—Caractérisation isotopique des anticorps spécifiques dans la distomatose humaine a Fasciola hepatica. Médecine et Maladies Infectieuses, 20: 177-181. [368]

Pandolfo (L.), ZiMBARO (G.), BArTolOMO (G.), GenoDER (A.), TACCONE (M.), GAETA (M.), ROli (A.) & GIULiC (L.L.), 1991.—Ultrasonographic and cholecystographic findings in a case of...
A review of human fascioliasis
RITCHIE (L.S.), 1948. - An ether sedimentation technique for rou-

RODRIGUEZ BARRERAS (M.E.), DIAZ HERNANDEZ (A.), MARTINEZ RONDELAUD (D.), 1980. - Donnees epidemiologiques sur la disto-

Rinz REBOLLO (M.L.), BASAGOLTI URIARTE (M.L.), BUSTAMANTE 40

SAKSONOV (S.I.)

RODRIGUEZ (H.), MILLA MARCELO (J.c.), Ruiz PEREZ (A.)

Parasitologia, 12: 10-11. [414]

SANCHEZ (C.), APARICIO (W.)

Fasciola hepatica en la poblaci6n human a de la irrigaci6n Asilo-

ASSIUT VETERINARY MEDICAL JOURNAL, 6: 111-122. [439]

SAPIRO (J.J.)

Fasciola hepatica diagnosticada por colangiograffa y en infecciones humanas. Boletin Chileno de Parasitologia, 47: 70-76. [437]

J.G. ESTEBAN, M.D. BARGUES & S. MAS-COMA

diagnosis of fascioliasis. Klínicheskaya Meditsina, 63: 73-76. (in Russian) [425]

SALAMA (H.M.), ABDL-VAHAB (M.F.) & FAYED (Z.), 1988. - Hepa-

SALEM (A.I.), ABUL BASHA (L.M.) & FARAG (H.F.), 1987. - Immu-

SALAMBER (Y.A.), 1974. - Petite douve des voies biliaires. Nouve-

SAMAHA (H.), 1989. - The zoonotic importance of fascioliasis in Abbi,

SAMPAIO SILVA (M.L.), CAPRON (A.) & CAPRON (M.), 1980. - Hu-

Parasitologia, 11: 262-264. [412]

Robert (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

Rivas (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

Rodrigue Barreiras (M.E.), Diaz Hernandez (A.), Martinez Rodriguez (R.), Milla Marchelo (J.C.), Ruiz Perez (A.) & Perez Avila (J.), 1986. - Urgencia y Fasciola hepatica. Revista Cubana de Medicina Tropical, 38: 305-310. [415]

Rogers (M.C.), DIMKE (K.L.) & Aparato Digestivo, Departament,
i

RIPERT (C.), TRIBOLEY (J.), LLONG DING GIAP (G.), COMBI (A.) & LABORDI (M.), 1987. - Epidemiologie de la fasciolose hu-

RINZ REBOLLO (M.L.), BASAGOLTI URIARTE (M.L.), BUSTAMANTE 40

RODRIGUEZ (H.)

Robert (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

Robert (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

Rivas (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

Rivas (R.), Chabasse (D.), LLINATA-DE-LA-JARRIGE (P.) & MA-

Haza (C.), 1981. - Diagnostic immunologique de la fasciolose a Fasciola hepatica par hémagglutination indirecte utilisant l’antige
tigne F II. Medicine et Maladies Infectieuses, 11: 262-264. [412]

A review of human fascioliasis

SROČZYNSKA (M.) & SMITHERS (S.R.), 1982.- Fascioliasis and other trematode infections. In: XIII Congreso Latino Americano de Parasitología (FLAP) (La Habana, Cuba), Libro de Resúmenes: 123. [461]

STURCHLER (D.), SPEISER (F.), BOGENMAN (F.) & DELMORO (G.), 1981.- Liver fascioliasis with unusual abscess formation, case report. Schweizerische Medizinische Wochenschrift, 111: 1578-1582. (in German) [462]

SU TER (F.), SCACCA (M.), SCIVOLA (D.) & CAROSI (G.), 1979.- Su un caso autoctono di distomatosi epatica in Provincia di Piacenza. Rivista di Parasitologia, 40: 159-165. [465]

TCHANN (P.), SALINAS (P.), LOGUEIRO (S.) & OBON (A.), 1994.- Evaluation de una técnica de inmunofluorescencia indirecta para el diagnostico serologico de fascioliasis humana. Boletín Chileno de Parasitología, 43: 25-27. [468]

TEMA (L.), POPA (L.), GRONI (A.) & TENTARLAN (L.), 1968.- Remarques cliniques et épidémiologiques à propos de 4 cas de la fasciolose d’hommes. Wiadomosci Parazytologiczne, 14: 565-568. [470]

TERRE (T.) & GEORGES (F.), 1979.- Fascioliasis in a case of obstructive jaundice. Khrurkia, Bulgaria, 32: 357-358. (in Bulgarian) [471]

TURKU (E.), 1985.- Fascioliasis hepatica. Khas. 1058-1060. [473]

VAKARIKHA (S.) & SULTANOV (V.), 1979.- Fascioliasis from the skin. Tha Police Medical Journal, 7: 48. [474]

VELASQUEZ (R.), FERNANDEZ (C.), NEYRA (M.) & VARGAS (V.), 1997.- Prevalencia de enteroparásitos en pacientes de laboratorio de Analisis Clinicos de la Facultad de Medicina de la Universidad Nacional de San Agustín de Arequipa-Perú. In: III Congreso Peruano de Parasitología (Arequipa, Perú, Libro de Resúmenes, Boletin Peruano de Parasitología, 12: 15-16. [477]
WESSELY (K.), REISCHIG (H.L.), HEINERMAN (M.) & STEMPKA (R.), 1988.- Human fascioliasis treated with triclabendazole (Fasinex) for the first time. Tropical Medicine and Hygiene, 38: 77-82. [489]

YOUSSEF (F.G.) & MANSOOR (N.S.), 1993.- Specific IgM and IgG levels during the acute and chronic phases of fascioliasis. Journal of Tropical Medicine, 2: 33-34. [497]

YUKICH (M.), 1985.- [Raffoxamide therapy in a child with fascioliasis]. Mikrobiologija, 19: 38-40. (in Turkish) [499]

ZAPATERO (A.), PEREZ (F.), LEDO (L.) & CABANAS (L.), 1986.- Hallazgos radiológicos en la fascioliasis hepática. Gastroenterología y Hepatología, 9: 151-152. [500]

ZARAGÓSI, MOLNÉR (J.), 1972.- Fasciola hepatica intracoledocal. Revista Española de las Enfermedades del Aparato Digestivo, 38: 77-82. [501]
